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Today, we’re launching a web-based SSH client: Tailscale SSH Console.

From the Tailscale admin console, admins will now see a little “SSH…” button to connect
to devices running Tailscale SSH. Click this, and you’ll pop open an SSH client, right in
your browser. Tailscale SSH Console is now available in beta.

To start a Tailscale SSH Console session, click “SSH” on the device, select
the username you want to connect as, and reauthenticate.

Web-based SSH clients aren’t new. Nearly every VPS and cloud provider already lets
you connect to your VMs from the web — so how is this different? With Tailscale SSH
Console, your browser becomes a Tailscale client, and joins your tailnet in the same way
as any other device that you run Tailscale on. To make this possible, we ported the
following to WebAssembly: the Tailscale client, WireGuard®, a complete userspace
network stack (from gVisor), and an SSH client.

When you click the “SSH…” button, we create an ephemeral auth key in the Tailscale
coordination server, and then give that auth key to a Tailscale client loaded by your
browser, which starts a node with that key. The client then creates an in-memory-only
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WireGuard keypair and starts to communicate with the Tailscale coordination server (to
discover the rest of your tailnet) and DERP relays (to be able to connect to other

nodes). Like other clients that use DERP, the traffic that passes through the relays is
encrypted and not visible to Tailscale.

And because this uses Tailscale SSH, which authenticates each packet based on its
WireGuard cryptographic identity, we don’t need to ask you for a password, or have
you upload a public key, or have you manage an authorized_keys  file. Just click “SSH…”
and you’re in 🪄.

One year earlier
Tailscale SSH Console started out as Brad’s vacation hack to see if Go’s WebAssembly
support was good enough to allow the Tailscale client to be compiled for the browser.
After some hacking and slashing to fix build errors (including changes to wireguard-go),
we had a binary that would load in the browser — but it couldn’t connect to anything.

Tailscale SSH Console connects your browser to another node running
Tailscale SSH.

Tailscale tries really hard to establish connections, and if a direct path is not available, it
will use a DERP relay server to forward packets. However, a browser is an even more
inhospitable environment than normal, and the DERP HTTP client reaching into
connection internals was not compatible with the fetch()-based HTTP transport  that
ends up being used by Go when targeting WebAssembly. Like all problems in computer
science, it could be solved with a layer of indirection. We added WebSockets as
another transport for DERP, and then wrapped a WebSocket connection into something
that’s close enough to a net.Conn  for the rest of the DERP code to use with no
modifications. We were lucky that the Go WebSockets library that we use (and
sponsor) already had good WebAssembly support, and only needed a small tweak. We
would later use this same “tunnel it through WebSockets” approach for the
coordination server protocol.

Though we had a working WebAssembly binary, it was rather…large. While this is
unavoidable to some degree when building Go for WebAssembly, there was surely
some low-hanging fruit A friend had recently released Weave a wasm viewer and we
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some low hanging fruit. A friend had recently released Weave, a .wasm  viewer, and we

extended it with a tree view to make it easier to see which packages and files were

contributing to the binary size the most. We found a few unnecessary dependencies,
and together with some build settings tweaks we were able to shave off a few
megabytes. However, there’s still more work to be done here.

Building a product
Just being able to have a Tailscale client run in the browser is cool in and of itself, but
there was still the question of “OK, but what would you use it for?”. This occurred while
we were developing Tailscale SSH, and we saw a natural application — using this new
capability to create a secure, in-browser, SSH client. We could have a client that let you
browse through the devices on your tailnet that were accessible to you, made use of
the policy to let you pick a username on the host, and integrated with check mode.

The most natural place for this SSH client would be Tailscale’s admin console, but that is
part of the closed source coordination server. We liked the idea of the WebAssembly
client being open source, but we needed a way to reuse it in our closed source repo.
We ended up making an NPM package to allow this, which was a bit of a novelty in our
Go-centric world. Though this package was developed for internal use, we want to
support other interesting applications — so please get in touch if you have something
in mind.

Adding the ability to create SSH sessions from our admin panel led to some interesting
user experience discussions. Would these sessions be transient, just open for a few
minutes to check on something, or longer affairs? Would the user want to have multiple
sessions running concurrently? As we pondered adding tabs to the panel, and possibly
making things draggable and minimizable, it became apparent that we were effectively
creating a bug-ridden, informally-specified implementation of half a window manager.

Rather than get into that business, we decided we should use real windows, and thus
allow the user to have the same flexibility that they would with a real terminal. To make
these windows fast, they are “child” windows that the main admin panel opens and uses
as rendering surfaces – all of the logic and state still remains in the parent window. This
approach has good performance characteristics, but did require some changes to our
frontend dependencies. To make it easier to iterate on these interface changes, we
recreated some tooling to allow us to use in-development code with our prod tailnet,
so that we could try out more realistic scenarios.
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Tailscale SSH ConsoleTailscale SSH Console

Maya demonstrates how to use Tailscale SSH Console.

To try out Tailscale SSH Console: first, enable Tailscale SSH on the device you’re trying
to connect to. Then, from the machines tab of the admin console, select “SSH…” to
connect to any machine that your access controls allow you to connect to. Re-
authenticate, and you’re in. See the documentation to learn more.
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